SYDNEY TECHNICAL HIGH SCHOOL # TRIAL HIGHER SCHOOL CERTIFICATE 2002 # **MATHEMATICS EXTENSION 2** #### **General Instructions** - Reading time 5 minutes - Working time 3 hours - Write using black or blue pen - Approved calculators may be used - All necessary working should be shown in every question - A table of standard integrals is supplied at the back of this paper - Start each question on a new page - Attempt all Questions 1 − 8 - All questions are of equal value | Name | <u> </u> | |-------|----------| | Class | • | | Question 1 | Question 2 | Question 3 | Question
4 | Question
5 | Question 6 | Question 7 | Question
8 | TOTAL | |------------|------------|------------|---------------|---------------|------------|------------|---------------|-------| ## **Question 1** 15 marks Marks a) Find $$\int \sin^3 x \, dx$$ b) Find $$\int \frac{dx}{\sqrt{2x-x^2}}$$ c) Use partial fractions to find $$\int \frac{5}{(x-3)(2x-1)} dx$$ d) Evaluate $$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$$ using the substitutuion $t = \tan \frac{x}{2}$ e) Find $$\int e^x \sin x \, dx$$ ## Question 2 15 marks (Use a new page) Marks a) Express $$\frac{2+3i}{1+i}$$ in the form $x+iy$. b) Given $$\omega = -1 + i\sqrt{3}$$ find i) $|\omega|$ ii) $$arg(\omega)$$ iii) $$\omega^5 + 16\omega$$ in the form $x + iy$ i) $$|z-1| \leq |z-i|$$ ii) $$\operatorname{Re}(\frac{2}{z}) \le 1$$ d) One of the square roots of $$a + 3i$$ is equal to $3 + bi$ where a and b are real. Find the value of a and b. $$|z-3| \le 3$$ and $0 \le \arg(z) \le \frac{\pi}{2}$ ## Question 3 15 marks (Use a new page) Marks - a) Consider the function $f(x) = \frac{x}{\ln x}$ - i) State the natural domain of f(x) 1 ii) Show that the curve y = f(x) 2 has a minimum turning point at the point (e, e). iii) Find the point of inflexion of the curve y = f(x). 1 iv) Sketch the curve y = f(x) showing the important features. 2 b) $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ where p, q > 0 are two distinct points on the hyperbola H with equation $xy = c^2$. i) Show that the equation of the tangent to H at $P(cp, \frac{c}{p})$ 2 is given by $x + p^2 y = 2cp$. ii) The tangents to H at $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ meet at T 2 Find the coordinates of T. iii) Find the equation of the chord PQ. 2 iv) Given that the chord PQ passes through the point (2c,0) 1 find a relationship between the parameters p and q. v) Find the equation of the locus of T as P and Q move about H 2 according to the restriction in part iv). Give a complete description of this locus. ## Question 4 15 marks (Use a new page) Marks a) The area bounded by $y = \frac{1}{x+1}$, the x axis and the lines x = 0 and x = 2 is rotated about the line x = 2. Use cylindrical shells to find the volume of the solid of revolution formed. b) Find the equation of the ellipse with centre the origin, 3 which has a focus at (2,0) and the corresponding directrix is x=4. c) The diagram shows the graph of the function y = f(x). Draw separate sketches of the following i) $$y = f(-x)$$ 1 ii) $$y = f|x|$$ iii) $$y = \ln(f(x))$$ $$iv) \quad x = f(y)$$ d) If ω is a complex root of $z^3 = 1$ find the value of i) $$1 + \omega + \omega^2$$ ii) $$\frac{1}{3+5\omega+3\omega^2} + \frac{1}{7+7\omega+9\omega^2}$$ a) Two circles touch internally at A. MT is a common tangent. A tangent to the inner circle at P cuts the outer circle at B and C. The interval $\ensuremath{\mathit{AB}}$ cuts the inner circle at $\ensuremath{\mathcal{Q}}$. The intervals \it{PA} , \it{CA} and \it{PQ} have been drawn. Neatly draw the diagram on your answer sheet. Prove that PA bisects $\angle BAC$. ### Question 5 (Continued) Marks b) The equation $2x^4 - 3x^2 - 2x + k = 0$ has a triple root. 4 4 Find the value of k. - c) Solve $x^4 6x^3 + 15x^2 18x + 10 = 0$ over the complex field given that 1+i is a solution. - d) On an Argand diagram ΔPOQ is a right angled isosceles triangle. O is the origin, P lies in the first quadrant and Q lies in the second. $$\angle POQ = 90^{\circ}$$. Given that OP represents the complex number a+ib, Write down the complex number represented by 1 ### **Question 6** 15 marks (Use a new page) Marks a) The function f is given by $$f(x) = e^{\frac{x}{1+kx}}$$ where k is a positive constant. i) Given that the tangent to y = f(x) at the point (a, f(a)) 3 passes through the origin show that $$k^2a^2 + (2k-1)a + 1 = 0$$. ii) Deduce that there is no such tangent as in part i) if 4k > 1. $\begin{array}{c} A \\ R \\ X \\ C \\ \end{array}$ ABC is a triangle. The line RQ produced meets BC produced at P. CX is drawn parallel to QR. Show that $$\frac{BP}{PC} \times \frac{CQ}{QA} \times \frac{AR}{RB} = 1$$ (This is known as Menelaus' Theorem.) ### Question 6 (Continued) Marks c) The base of the above solid is the area enclosed by $y^2 = 2x$ and x = 4. Each cross section of the solid by planes perpendicular to the x axis is an isosceles triangle with the equal sides meeting above the base of the solid. A typical cross section of thickness Δx has been shaded. The perpendicular height of the solid at x = 4 is 4 and the perpendicular height of the solid at x = 0 is 3. A straight line joins the vertex of the triangle at x = 4 to the point 3 above x = 0. - i) Show that the perpendicular height of the solid as a function of x 2 is given by $\frac{1}{4}x+3$ - ii) Find the volume of the solid. ## **Question 7** 15 marks (Use a new page) Marks a) Given that $I_n = \int x^n e^{2x} dx$ i) Show that $$I_n = \frac{x^n e^{2x}}{2} - \frac{n}{2} I_{n-1}$$ ii) Use the above result to find $\int x^2 e^{2x} dx$. b) A particle of mass 2kg is propelled from the origin along the x axis with an initial velocity of Qm/s. The only forces acting on the body in the direction of the x axis are friction which is a constant 16 Newtons and air resistance which equals v^2 Newtons where v is the velocity of the particle t seconds after leaving the origin. i) Explain why $$\frac{dv}{dt} = -8 - \frac{1}{2}v^2$$. ii) Show that $$t = \frac{1}{2} \tan^{-1} \left(\frac{4Q - 4v}{16 + Qv} \right)$$ 5 iii) By using $$\frac{dv}{dt} = v \frac{dv}{dx}$$ find an expression for v in terms of x. ## **Question 8** 15 marks (Use a new page) Marks a) Solve the equation 4 $$\sin(x+10^{\circ}) = \cos(4x)$$ for $0^{\circ} \le x \le 180^{\circ}$. b) Use Mathematical Induction to prove that 4 $$\tan \theta + 2 \tan 2\theta + \dots + 2^{n-1} \tan(2^{n-1}\theta) = \cot \theta - 2^n \cot(2^n \theta)$$ for all positive integers n . c) The function f(x) is given, for x > 0, by $$f(x) = 2\log_e x - \frac{x^2 - 1}{x}.$$ i) Show that the only zero of f(x) occurs at x = 1. 3 Justify your answer. ii) Let $$g(x) = \frac{x \log_e x}{x^2 - 1}$$, for $x > 0$ and $x \ne 1$. Show that $$0 < g(x) < \frac{1}{2}$$. #### STANDARD INTEGRALS $$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$ $$\int \frac{1}{x} dx = \ln x, \quad x > 0$$ $$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$ $$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$ $$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$ $$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$ $$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$ $$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$ $$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$ $$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$ $$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$ NOTE: $\ln x = \log_e x$, x > 0 | Teacher's Name: | Student's Name/N°: | |--
--| | | 50 KUTU M | | <u>G</u> 1 (S | 3x doc = Sing (1-Co" 2) do. let 1 - Con. | | y | du Sing da | | front of at April 100 and the regulation would be | = (a - 1 du | | | | | and the state of the separate state of the second to | = 311-4.10 | | | • | | | = \frac{1}{3} (cm \times - Cm \times - C | | - da | - VI-1x-1 | | 5 J. J. J. Z. | - X- 2- 3 N (-(X-2 | | | = .S _{1n} -1 (2-1) + | | | (x -51=1/1-2) +1-) | | | | | | THE PARTY OF P | | 6, 5 | _ A B | | (~-3/2 | $\frac{A}{x-3} = \frac{B}{x-3}$ | | | 5 = A(2x-1) + B(x-2) | | | The state of s | | | 5 = 5A = A=1 | | x ≥ € | S:-268 ⇒ B=-2 | | C | $\frac{1}{\sqrt{x}} = \sqrt{\frac{1}{x^{-3}}} = \frac{2}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}} $ | | 7 13-71 | X-3 | | ************************************** | = 10(4-1) - 10 (27-1) + 6 | | | | | The entire to the second of | = / (272) 4 - | | | AND 14 | | | N - | | | The transfer of the control c | | | the state of s | | | , | | | | | Teacher's Name: | Student's Name/ | Y*: | | |--|--
--|--| | | l_ | | | | | Const. | | | | d/ 2 2 | | | | | | | *************************************** | | | | 746 | consisting that a first region of the control | | | + يه در ل | 1-41
1442 | | | | | engapus enem can mean men ar | No. 2 Co. 100 | | | . (1 3 | dt | | | | | . + ~ | | | | | | | | | | | | Marcon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | $= \int \frac{1}{\sqrt{z}} + i c dz$ | 一煮】 | | | | L-4-3 | | | | | _ ~ /4 | -15 -te-10) | e er manner (minute a en min) | | | = = = (+on | 5 70- 70- | manuscriptor and the state of t | | | enter to the second contract of the second | · · · · · · · · · · · · · · · · · · · | | | | - 三点 | | | | | 33 9 | | | | | 3.5 | The state of s | | | | | er i errennen annen i geger pron | | | | C 25 | | u=e= | | | g SetSmid | ~. • | | V = -1 -110 | | and the second s | e | 0'-2" | v' = 5-~ | | = - e ~ C - + | e Con da | | | | | | 21 = 13 °C | V = 500 | | : - e Cm + / ex | Sinze - (+ "Sinneda.] | u'se" | V'= /'-" | | and the second s | | | | | C 70 3 | .3/ 3/ | ne - Sex Sinadae | | | Sersanda = | -e Cons. + e 35. | . 2 - J ez * 5mz da | | | , | The later transaction of | | | | 2 \ 2 3000 | - r. 1 Sin v - Con | .) | | | | | | | | · Ten Singular | - = (S-x-Con | 1 . (| | | | | 2 - 2 | T. C. | | | | | | | | | | A Company of the second | | | | Teacher's Name: | Student's Na | me/N*: | | |--|--|--|--| | 2- 2 | -3 ₄ 2-34 | 1.4 | | | | 1+4 1-6 | 1-4 | | | | 2-11-3 | 3 - 3 | | | | -1-50 | the transfer opening a report of | | | | 2 | | | | | = -1 - 8 | Landania di Antonio | 1881 A 10 10 19 19 19 1 1 1 1 1 1 1 1 1 1 1 1 | | b. 1) /s. | rl = J(-1) + (5) | | | | | | 1 15 | | | | | | and the second of o | | <u>") a</u> | (w)= 1 ⁿ
 | | | THE RESERVE OF THE PARTY AND T | THE STATE OF THE STATE OF THE STATE OF | | | | 19) w [*] | + 16 4. | and the same of the spine of the same of | The second of processes and a | | | (260 3) + H | ((26 4) | and the second section of section of the second section of the section of the second section of the second section of the sectio | | | ` | | | | = | 32 Cu 10 7 + 3 | 1. (i) 1# | 101 1 101 101 10 Month 1 - 11 101 | | | 3: (0(-5) +3 | . (), ¥ | | | | 726.5.4-3 | 「一つデナン…** | | | | 64 Con 35 | recognition to the same | | | | - 27 | | | | | | | serves and assembles see and | | | | | | | | | | | | Teacher's Name: | Student's Name/N°: | |-----------------|--| | 9. 1). | | | | | | u, Ro | $\frac{2}{3}$) ≤ 1 $\frac{2}{3}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{2}{2}$ $\frac{2}{3}$ | | . Re(| <u>(i) </u> | | 7.7 s | | | d, Ja+3. | = 346; | | egy-frey A | - 9-12+661
 | | 9-4 | Education of the Control Cont | | Teacher's Name: | Student's Name/N°: | |---|--| | | 9 | | <u> </u> | | | | · Children from from the commence of comme | | | 1 | | | | | | | | Q3 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 3.70 341. | | | COLUMN TO THE THEORY OF THE THEORY OF THE THE THEORY OF THE THEORY OF THE THEORY OF THE THEORY OF THE THE THE THEORY OF THE THEORY OF THE THEORY OF THE THEORY OF THE | | <u>_</u> | y = 1000 | | Secret No. 1988 to the secret I will appear | r = (0.7 t) = 2(x) | | | | | | [h 2] | | | | | 57 p when | y' = 0. | | | (171 =) | | *************************************** | *** | | | | | | | | | $\frac{(\ln x)^{-1}\left(\frac{1}{2}\right)-(\ln x-1)\left(2\ln x\right)^{\frac{1}{2}}}{(\ln x)^{-4}}$ | | | (nx) + | | | $\frac{2-\ln x}{x/(\ln x)^3}$ | | | The state of s | | +1 :1 :1 :1 : | 2 = 2 y /) = 2 2 (n g) | | 1.27 72. 72 | | | | to the first the second second to the second | | | mn at (x,e) | | | | | | n dolt to the neglection of the column control of the transfer of the column of the total of the column col | | | and a stability of the | | | | | | | | | | | A | | |--|---| | 41) rafferi - La j' =0 | | | 1.3 2 - In 7 =11 | | | Lyst. | | | | | | 71 - P. | | | when a side of the second | | | In which | | | | | | | | | | | | of diden-ife & | | | | | | 10) 9 7) (| | | 14) | | | | | | COMP. | | | | | | | | | | | | | | | | | | The control of co | | | and the second s | | | V | | | MINOR TO THE RESIDENCE OF THE RESIDENCE OF THE PROPERTY | | | | | | The second secon | | | The same of sa | | | | *************************************** | | II t t t i e i e e e e e e e e e e e e e e | | | Company of the first control of the first control of the o | | | - 10 and 10 cm 1 and 10 cm 1 and 10 cm | | | | | | ATT TO THE THE THE TAX TO | | | The state of s | | | ATTENDED BY THE CONTROL OF CONTR | | | | | | manner of the first teacher than the first of o | | | | | | Teacher's Name: | Student's Name/N°: | |--------------------------------------
--| | Q3 | | | ;) | $g = c^{2}x^{-1}$ | | | (4) | | | and the following of the property prope | | | who gree | | | C7 | | Maddless and Board & Sall additional | · · · · · · · · · · · · · · · · · · · | | | enter I days of | | | 9-5=(12) | | F 17 Mark & At 17 (1991 1 (1994 | THE RESERVE AND A STATE OF THE PARTY OF THE RESERVE AND A STATE OF THE PARTY | | | ρη | | | | | | x. py = 2 P } Solar southwesty | | | | | | 9-19-69 | | | in : 2(β-1) | | | 9 = \frac{\partial \text{\sigma} \rho \partial \text{\sigma} \rightarrow \rho \rightarrow \frac{\partial \text{\sigma} \rho \partial \text{\sigma} \rho \rho \rightarrow \frac{\text{\sigma} \rho \partial \text{\sigma} \rho \rho \rho \rightarrow \frac{\text{\sigma} \rho \rho \rho \rho \rho \rho \rho \rho | | | 779 | | | | | | 2 - P (P13) - P | | | x 27 - 22 | | | | | Teacher's Name: | Student's Name/N°: | | |---|--|---| | | <u> </u> | | | Jy) m eo = | <u>p 1</u> | | | | < y - 09 | | | | ساب
۶۶ | | | | ۲۶ | | | - godin | | | | y - 3 | 5 = - 1 (- 2 - 2) | | | 214 - C | 9-2-7-12 | | | 7.5 | 1 | | | or - pay | = <(0-3) | | | | The same of sa | | | | | | | 14) Sub (25,0) | take chest | | | | | | | 20+0- | s (p,q) | | | | | | | | | | | | 7. | - | | v) T (================================== | (P+1) | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | , 2 = 2 | $\underline{F1}. \qquad \underline{y} = \frac{2}{9+4}$ | | | P- | 2. y = p+1. | - | | | 4.9 = 2 | | | | | | | , 1000 | y = but trager to must recet attack | | | | of hyperbol- in 1st good- | | | . 0< | 2 < C | | | | | | | | | | | | | | | Teacher's Name: | Student's Name/I | Y°: | |--|--|--| | Q4 | | | | 9/ | the
state of s | | | | | 1 200 | | A | idio a horyld - thickness | | | | | | | (| >) + g + 0 20 | | | | | | | V - S; | 27 (2.11) - Zu dr. | - Plat the Mary Military or Property - America of the co | | = 17 | 251) day | e constitutor do cumo como constituto de con | | | • | and the state of t | | *- ~- T | 3-1-3-1 | The state of s | | | | | | ะ นท ∫ | 3 - 301 dr | | | | 3 h/x-1) - x] | | | = 2π[_ | 3 (h/2+1) - x.] | THE RESIDENCE OF RE | | = = 7/ | 3/13-2)-(3/11-0) |)] | | | | | | T ~ TT, | [3/1-2] @ [2] | | | | | | | bae=2 | 2 = 4 | nemarkited represent the letters are distingt to the start time to the | | | => q = 4 e | | | | | | | |) | as contributed and states and designation with the con- | | Z = 7 | _ | | | a = | 4 | 3, 5, 5 | | | V1. | S 4 | | | 2.A. | have and believe we are not to be a supplied to the same of sa | | 6 = | = (1-2) | | | ر کاری در دیواندی به راید و چه ایجاد میشود در این ا
این کاری در دیواندی به از در دیوان مید میشود در این | 5(1-5) | | | | | | | | | | | eacher's Name: | Student's Name/N°: | | | (24 d) 1) | Student's Name/N°: | is w | | Teacher's Name: | Student's Name/N°: | |--|---| | (24 a) 1)] | Student's Name/N°: | | ω3 | =1 (w) = (w) = 1 =1 | | | + w, w = 0 (sond whs) | | 11) 3+50 430 | 7,77,90 km | | | | | 3,3023 | 7-7 | | | + - | | | w + 1 | | | w 1 (w 2 e l) | | 116 | | | | | | | | | | | | 10 M . A | Management of the second state of the second state of the second | | the second secon | | | | | | Teacher's Name: | Student's Name/N°: | | |--|--|-------| | | | | | · · · · · · · · · · · · · · · · · · · | | ····· | | | | | | and appeared to the property of o | protection for the first of the contract th | | | | | | | | 64 | | | 11) | , | | | | | | | | -1) | \ . \ . \ \ | | | | | | | | | | | | | | | a
profession to the control of c | 7 | | | 1~) | · · · · · · · · · · · · · · · · · · · | | | | 1 | | | | | | | | , | | | | | | | | | | | | <u> </u> | | | The first of the transfer of the second | - more to be an all a second a second as the second and | | | | | | | | | | | | The state of the second section section of the second | | | The second secon | The second state of the second | | | | | | | | | | | Teacher's Name: | Student's Name/N°: | |---|--| | Q.S. | ~ · / ^ | | 91 | 2 | | | 4 | | 3/2 | (my 5)/A | | | | | 11 1990 1 10 1111111 111 111 111 111 11 | | | | T | | | | | let <1 | MAL = X < PA(= 4 | | p | | | | ABC = x (angle in alternate second) | | | BPR = y (extrage of) youls sound I would interest supply | | | PARL = y (angle in attend symul) | | | - | | | AP =< CAP | | | biseds LBIC. | | b) 2x 4-32 1 | -2x+k=0 fale | | | - 20 , while | | 24-11-6 = 6 | 5 Single | | 50hr5 | The state of the control cont | | x = ± = | | | substitute 1 to 1= | to lif derich | | 3(1) -6(1) | THE RESERVE OF THE PARTY | | لمسه فاوسل خ | | | 5-bdo 2.9. | His | | 2(-t) + - | 3/-t/ - 2(-t) +k = | | Teacher's Name: Student's Name/Nº: | | |--|----------| | <u> </u> | Te | | $= 3 + 6x^3 + 15x^2 - 18x + 10 = 5$ | | | T | - | | (+ \ D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | (2(-(12))(2-(1-)) U o halo | l | | 21 - 2m +2 U a frage | ļ | | 24-623 + 15x -18x 110 20 | | | The state of s | j | | $\left(\chi^{2}-2\chi+1\right)\left(\chi^{2}-4\chi+5\right)=0$ | | | | 1 | | X | | | Z = 4 t (0, +1) 5 | <u> </u> | | The second was a second to the | | | = 2:: | Ł | | 1 months 2 th 1 th | ļ | | The second secon | | | A 8 | | | | 1 | | | | | The state of s | | | O THE RESERVE OF THE PARTY T | | | E NE LO MARCO DE SE LES ESSENSIONES E NO SE SE SES ESSENSIONES E NO SE | | | THE RESIDENCE OF RE | | | 1) 00 = 4 (1.0) | | | | | | = -b · i a | | | ii) PQ = OG - OP | | | = (1 \((\(\) \) | | | | | | = -(a,b) + i(a-b) | | | THE COLUMN TWO COLUMN TO THE COLUMN TWO COLUMN TWO COLUMN TWO COLUMN TO THE COLUMN TWO COLUMN TO THE COLUMN TWO TW | | | A STATE OF THE STA | | | • | | | Teacher's Mame: | Student's Name/N°: | | |--|--|---| | Cl B. | 7 | | |) f | | | | | 4. k1/1 = (i) 26 | | | f*/_ | $x_{i}^{2} = e^{\frac{2\pi}{3}} \frac{(1+k_{2})(1)-(k_{1})x_{1}}{(k_{2})^{2}}$ $x_{i}^{2} = e^{\frac{2\pi}{3}} \frac{(1+k_{2})(1)-(k_{1})x_{2}}{(k_{2})^{2}}$ | | | | | | | | = e * (1/1.4) | | | | = e * (10k2) | | | | . The second of | | | al x= | A a | | | | r = - (+ ka) | | | | | | | .'. વ્ય | genter of transf is | | | , | | | | 14 - | $f(a) = e^{\frac{a}{(4a)}} \left(x-a\right)$ | | | · · · · · · · · · · · · · · · · · · · | (1.14) | | | | () The same of th | | | | 5-6 (10,0) | | | | 5-6 (10,0) | | | | $\frac{f(\lambda)}{f(\lambda)} = \frac{e^{\frac{\alpha}{1+k}}}{(1+k)^k} \left(-\frac{\alpha}{2}\right)$ | | | | $f(x) = e^{-\frac{\pi}{4}}$ | | | | (14kg)" | | | | Chia | | | | e the = -a c the | | | | e = -a. p +++++ | | | | a | - | | | 1 = /14)2 | | | | | | | | k. a , 2ka+1 = a | | | | The second secon | | | and the second second second | Ka2 + a(2k4)+1=0 | | | | Sometimes ages and the object of the Michigan State of the State of the Option | - | | | the filters of the state | | | down and the newspaper are a re- | | | | | THE RESIDENCE OF LINES OF MALE PROPERTY AND A PROPERTY OF THE | | | | | | | and the state of the state of the state of | and the second of o | | | | | | | Teacher's Name: | Student's Name/Nº: |
--|--| | | | | () () | h | | ``\ <u>-~</u> `> | | | | - | | حن (سبب | he are her a pel | | | | | ٠٠٠ | - x = 1 = 1 | | The state of s | . 4 = 4m · 3 | | | | | | h= 42,3 | | | | | ii) A(>) = | = -t x box a bisyld | | | = L + 2y x (+ 7+1) | | | = 1. 2. Jun (\$227) | | | £ + 5 < 1 cm (4 cm) | | | | | | JEA (\$ 217) On | | . V = S | $\int_{-L_{\infty}} \left(\begin{array}{c} \zeta \times 1 \end{array} \right) dx$ | | | | | = 15 | 5 + 3x d2 | | | | | | $\int_{-\infty}^{\infty} \frac{\xi}{x} + 2x$ | | | 72.732 | | | 5- [(-1) + 3.2) - (0)] | | | 5 / 5 | | | 5 en with | | | ANTE TO THE PROPERTY OF PR | | | | | Teacher's Name: | Student's Name/N°: | |---------------------------------------|--| | 1) | tand if equalic he no solt | | | I-4 0 < 0 | | | (2k-1) - 4(k)/() < 0
4k'-4k:1-4k' &0 | | · · · · · · · · · · · · · · · · · · · | # _K _>.1 | | b) | - | | | 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | <u>c</u> | | | BP = BR * (Interpl - p-p-har) | | | ac = RX (introsph in projection) | | | RX = AR x &C 5.6 rdo x | | | 6P - 6R
Pr. 98-94 | | | Pt. AR-UL | | | 8 - 48. 94 -
A. 58. 46 | | | A distribution of the second o | | To be to Name 29 | Teacher's Name:Student's Name/N°: | |--
--| | Teacher's Name: Student's Name/N°: | (i) dd = - (3+ (4) | | | | | | 5+ £ \$ = = = dt | | | 2 d = - dt | | $\therefore T_n = (x^n) \left(\frac{1}{2} e^{\lambda n} \right) - \int (n x^{n-1}) \left(\frac{1}{2} e^{\lambda n} \right) dn$ | and the same of th | | $=\frac{x\cdot e}{2}-2\int x^{2}e^{2x}dx$ | 1. Substitute = - Sub | | The state of s | | | = x^e _ 1 _ 1 | when the vac | | 2 2 2 | C = 1 ta-1 = | | ii) $I_{L} = \int x^{2} e^{-dx}$ | ' | | | A = 2 for 6 - 1 for 5 | | = {x c x - 1, | 21 = ta= 8 - ta- 4 | | = {220 - [{220 - 16] | take tou I boil silv | | AND THE RESIDENCE OF THE CONTROL | ton 24 . tan (tan " = -ta." =) | | = {x e - 1xe + 1 } e da | | | = tre + te + te | = ton ton & - ton fa-1 \$ | | = 2 (2 - 2 + 2) + c | 1 + (+a++-" = >+ + + + - 5) | | - 20 (3 -3 + 2) + 0 | = \frac{2}{3} | | 3 F=ma | 1+ 22 | | : 2-a=-16-2 (-w as asking agoinst motion) | - 4a-4v | | . a = -8- [v] | The state of s | | | 2+ = fon (191, AT) | | di 5 1 | 1 - 1 + - 1 () | | The state of s | 10.00 | | | | | | | | | Teacher's Name: Student's Name/N°: | | acher's Name: Student's Name/N°: | | | 14) V da = -3-2v | Q3 qy Sin(260) = Gy+2 | | The second secon | | | V dV = -1 d ≈ | 1_ Co; (90-(4+10)) = Control | | integration. | $\therefore q_0 - (x_{(0)}) = n_0 36^{\circ} \cdot t + x$ | | Teacher's Name: | Student's Name/Nº: | |-----------------|--| | | | | V | do = - 3-tv | | ("!") | #AC | | | The or televine conduct different county (Highleron) and distance from the following distribution of the county of | | V | N = -↓ d ≈ | | 16 - | . ~ ~ | | | Judeg making | | | | | | 2 do 2 | | , | 16-7 | | | (16,2) = - + 2,10 | | ± !\ | (1614) = -\$ × + C | | | L 1-0 ~= a x 20 | | | | | | c = = = [16.0] | | | AND THE RESIDENCE WAS ASSESSED FOR A SECURIOR OF THE PARTY PART | | | 21 = ln/16+2) - ln/16-v) | | | 76 = In/(6+2) - In(16+4) | | | The Committee of the South Committee of the | | | $x = h\left(\frac{6.64}{6.62}\right)$ | | | | | | (6-8) | | | " | | | 161 7 | | | 70,00 | | | THE TRANSPORT OF A PROPERTY OF THE | | | $e^{-x^2} = (u, a^2) e^{-x}$ | | | | | | v= (16+Q) e-16 | | | The state of s | | | Ju | | | T | | | The same of sa | | | | | Teacher's Name; Student's Name/N°: | |--| | a, Sin(2610) = G, +2 | | | | 1'- Cos (90-(410)) Con+24 | | 10 - (num) = n-360° 1+2 | | 50-7 = 1430 1490 50-7 = 1 14 20 - 470
-50 = 1430 -50 3x = 1430 -50 | | $2 = \frac{1}{2} \left(\frac{n_0}{n_0} \frac{3n^2 - 5n^2}{n_0} \right)$ | | 1-0 X = 16° 121 2 = 73) 1° | | 1EI X 2 58° | | n-1 x = 160° | | - Solition: 16, 55° 97.5° 160° | | | | to a control of the second se | | The second state of the o | | THE METERS OF THE STREET OF THE STREET STREET OF THE STREET STREET, AND THE STREET OF | | The state of s | | | | | | $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} x - \frac{1}{2} \int_{-\infty}^{\infty} $ |
---| | $f(0) = \frac{1}{2} - 1 - x^{-1}$ $= \frac{2x - x - 1}{x^{2}}$ $= -(x^{-1}x - 1)$ $= -(x^{-1}x - 1)$ $= \frac{2x - x - 1}{x^{2}}$ which to regard to find value of $x = 1$ and $x = 1$. Concady be one given | | $\frac{1}{ x } = \frac{1}{2x} - 1 - x$ $= \frac{1}{2x^{-2x-1}}$ $= -(x^{-2x-1})$ $= -(x^{-1})$ which is regarded for all values of $x = x > 0$ energy $x = 1$ for only the one gives | | $\frac{1}{ x } = \frac{1}{2x} - 1 - x$ $= \frac{1}{2x^{-2x-1}}$ $= -(x^{-2x-1})$ $= -(x^{-1})$ which is negative for all values of $x = 1$ are given and $x = 1$. Consulty the cost $x = 1$. | | $\frac{1}{(x)} = \frac{1}{2x} - 1 - x$ $= \frac{2x - x^2 - 1}{x^2}$ $= -(x - 3x)$ | | $\frac{1}{(x)} = \frac{1}{2x} - 1 - x$ $= \frac{2x - x^2 - 1}{x^2}$ $= -(x - 3x)$ | | $\frac{1}{(x)} = \frac{1}{2x} - 1 - x$ $= \frac{2x - x^2 - 1}{x^2}$ $= -(x - 3x)$ | | $= -(x^{-1})^{\frac{1}{2}}$ $= -(x^{-1})^{\frac{1}{2}}$ which is regarded for all values of $x > 0$ energy $x = 1$ for only be one given | | $= -(x^{-1})^{\frac{1}{2}}$ $= -(x^{-1})^{\frac{1}{2}}$ which is regarded for all values of $x > 0$ energy $x = 1$ for only be one given | | which is negative for all values of the \$10 everys \$\pi = 1\$ in the control of the control of \$\pi = 1\$ in the control of the control of \$\pi = 1\$ in the control of the control of \$\pi = 1\$ | | which is negative for all values of the \$10 everys \$\pi = 1\$ in the control of the control of \$\pi = 1\$ in the control of the control of \$\pi = 1\$ in the control of the control of \$\pi = 1\$ | | which is regarding for all values of the \$10 country of \$2.1. from allege decreasing weight of \$2.5.1 (on only be one your | | which is regarding for all values of the \$10 country of \$2.1. from allege decreasing weight of \$2.5.1 (on only be one your | | which is negative for all values of the >12 secret and a col- | | which is negative for all values of the >12 secret and a col- | | which is negative for all values of the >12 secret and a col- | | Con only be on Jew | | Con only be on Jew | | Com only be on yes | | 100 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 | | g(n) = x(0) = x | | | | | | imiker O <x<1 td="" xhx<0<=""></x<1> | | Smiler 0 < x < 1 2 hx < 0 | | 1(2) >0 | | | | A PART CO. | | x>1 = x/x2 > 0 | | 2×>1 2ch n ≥ 0 | | The second to the second trace and the second secon | | .', y(¬) > v | | | | | | 5(1) >0 for all x >0 x d/ | | | | Teacher's Name: | Student's Name/N°: | |-----------------|--| | Q8 c) | i) (c-d). | | | $g(z) = z^{-1}$ | | | g(x) = x'-1 | | | | | | $= \frac{2}{2^{(1)}} \cdot \frac{1}{2} \left(\frac{1}{2} \ln n \right)$ | | | $= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{2}{2} \frac{1}{2} \right]$ | | | = [[] + x(0)] | | for 04 | . ⊃i < ⊃i ~ < ♡ | | | 121 < 1 22 -1 < 0 far port) | | | - 2(A) < 2 | | | | | | $a(b) \leq \frac{1}{4}$ | | | _ | | to ne | >1 2-1 >0
f/2 <0 for part) | | | f/2) <0 +re- god) | | | : 2 (%) < 0 | | | H | | | : | | | | | | Co-bining both add o < g(d < 1 | | | the control of the same | | | The state of s | | | THE PERSON AND A LITTLE CO. TO DESCRIPTION OF THE PERSON PROPERTY OF THE PERSON | | Teacher's Name: | Student's Name/N°: |
--|--| | | | | e | | | | | | | * Thomas and all 11 his took and the same an | the same of sa | | | | | | | | | THE COLUMN ASSESSMENT TO BE ASSESSMENT TO THE PARTY OF TH | | | . who are a | | | | | | h 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 | | | | - 11 · · · · · · · · · · · · · · · · · · | | *************************************** | 100 0000 | | | | | | - Water | | | The state of s | | | The state of s | | | | | | | | | NOTE AND THE STATE OF | | Total 1000 11 11 11 11 11 11 11 11 11 11 11 1 | 4 to 1 | | | A CONTRACTOR AND THE REAL PROPERTY OF THE PROP | | | and the second of o | | | |